Hosts the direct and the complementary error function.
Constructor | Description |
Full Usage:
ErrorFunction()
|
|
Static member | Description |
Full Usage:
ErrorFunction.Dawson(x)
Parameters:
float
-
The function argument
Returns: float
Dawson's integral for argument x.
|
Dawson(x) evaluates Dawson's integral for a double precision real argument x. 2 / x 2 -x | t F(x) = e | e dt | / 0
|
Full Usage:
ErrorFunction.Dawson(x, bDebug)
Parameters:
float
-
The function argument
bDebug : bool
-
If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.
Returns: float
Dawson's integral for argument x.
|
Dawson(x) evaluates Dawson's integral for a double precision real argument x. 2 / x 2 -x | t F(x) = e | e dt | / 0
|
Full Usage:
ErrorFunction.Erf(x)
Parameters:
float
-
The argument x.
Returns: float
The error function value of the argument x.
|
Erf(x) calculates the double precision error function for double precision argument x.
This is a translation from the Fortran version of SLATEC, FNLIB, CATEGORY C8A, L5A1E, REVISION 920618, originally written by Fullerton W.,(LANL) to C++. Series for erf on the interval 0. to 1.00000E+00 with weighted error 1.28E-32 log weighted error 31.89 significant figures required 31.05 decimal places required 32.55
|
Full Usage:
ErrorFunction.Erf(x, bDebug)
Parameters:
float
-
The argument x.
bDebug : bool
-
If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.
Returns: float
The error function value of the argument x.
|
Erf(x) calculates the double precision error function for double precision argument x.
This is a translation from the Fortran version of SLATEC, FNLIB, CATEGORY C8A, L5A1E, REVISION 920618, originally written by Fullerton W.,(LANL) to C++. Series for erf on the interval 0. to 1.00000E+00 with weighted error 1.28E-32 log weighted error 31.89 significant figures required 31.05 decimal places required 32.55
|
Full Usage:
ErrorFunction.Erfc(x)
Parameters:
float
-
The argument x.
Returns: float
The complementary error function of the argument x.
|
Erfc(x) calculates the double precision complementary error function for double precision argument x.
|
Full Usage:
ErrorFunction.Erfc(x, bDebug)
Parameters:
float
-
The argument x.
bDebug : bool
-
If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.
Returns: float
The complementary error function of the argument x.
|
Erfc(x) calculates the double precision complementary error function for double precision argument x.
|
|
Given a complex number z = (x,y), this subroutine computes the value of the Faddeeva function w(z) = exp(-z^2)*erfc(-i*z), where erfc is the complex complementary error function and i means sqrt(-1).
The accuracy of the algorithm for z in the 1st and 2nd quadrant is 14 significant digits; in the 3rd and 4th it is 13 significant digits outside a circular region with radius 0.126 around a zero of the function. All real variables in the program are double precision. The parameter M_2_SQRTPI equals 2/sqrt(pi). The routine is not underflow-protected but any variable can be put to 0 upon underflow; The routine is overflow-protected: Matpack::Error() is called. References: (1) G.P.M. Poppe, C.M.J. Wijers; More Efficient Computation of the Complex Error-Function, ACM Trans. Math. Software, Vol. 16, no. 1, pp. 47. (2) Algorithm 680, collected algorithms from ACM. The Fortran source code was translated to C++ by B.M. Gammel and added to the Matpack library, 1992. Last change: B. M. Gammel, 18.03.1996 error handling
|
|
Given a complex number z = (x,y), this subroutine computes the value of the Faddeeva function w(z) = exp(-z^2)*erfc(-i*z), where erfc is the complex complementary error function and i means sqrt(-1).
The accuracy of the algorithm for z in the 1st and 2nd quadrant is 14 significant digits; in the 3rd and 4th it is 13 significant digits outside a circular region with radius 0.126 around a zero of the function. All real variables in the program are double precision. The parameter M_2_SQRTPI equals 2/sqrt(pi). The routine is not underflow-protected but any variable can be put to 0 upon underflow; The routine is overflow-protected: Matpack::Error() is called. References: (1) G.P.M. Poppe, C.M.J. Wijers; More Efficient Computation of the Complex Error-Function, ACM Trans. Math. Software, Vol. 16, no. 1, pp. 47. (2) Algorithm 680, collected algorithms from ACM. The Fortran source code was translated to C++ by B.M. Gammel and added to the Matpack library, 1992. Last change: B. M. Gammel, 18.03.1996 error handling
|
Full Usage:
ErrorFunction.InverseErf(y)
Parameters:
float
-
Argument.
Returns: float
A value x so that Erf(x)==y.
|
Inverse of the error function Erf(x).
|
Full Usage:
ErrorFunction.QuantileOfNormalDistribution01(y)
Parameters:
float
-
Returns: float
|
Quantile of the normal distribution function NormalDistribution[0,1].
Adopted from Cephes library; Cephes name: ndtri
|