Kohlrausch Type

The Kohlrausch function in the frequency domain.

Constructors

Constructor Description

Kohlrausch()

Full Usage: Kohlrausch()

Static members

Static member Description

Kohlrausch.GetBetaLnWOfMaximum(beta)

Full Usage: Kohlrausch.GetBetaLnWOfMaximum(beta)

Parameters:
    beta : float - The beta parameter.

Returns: float The maximum location (beta*ln(w)) of the imaginary part.

Returns (approximately) the location of the maximum of the imaginary part of the Fourier transformed Kohlrausch function.

beta : float

The beta parameter.

Returns: float

The maximum location (beta*ln(w)) of the imaginary part.

Kohlrausch.GetLnWOfMaximum(beta)

Full Usage: Kohlrausch.GetLnWOfMaximum(beta)

Parameters:
    beta : float - The beta parameter.

Returns: float The maximum location ln(w) of the imaginary part.

Returns (approximately) the location of the maximum of the imaginary part of the Fourier transformed Kohlrausch function.

beta : float

The beta parameter.

Returns: float

The maximum location ln(w) of the imaginary part.

Kohlrausch.GetMaximumImaginaryPart(beta)

Full Usage: Kohlrausch.GetMaximumImaginaryPart(beta)

Parameters:
    beta : float -

Returns: float

Returns (approximately) the maximum value of the imaginary part of the Fourier transformed Kohlrausch function.

beta : float

Returns: float

Kohlrausch.GetWOfMaximum(beta)

Full Usage: Kohlrausch.GetWOfMaximum(beta)

Parameters:
    beta : float - The beta parameter.

Returns: float The maximum location ln(w) of the imaginary part.

Returns (approximately) the location of the maximum of the imaginary part of the Fourier transformed Kohlrausch function.

beta : float

The beta parameter.

Returns: float

The maximum location ln(w) of the imaginary part.

Kohlrausch.Im(beta, w)

Full Usage: Kohlrausch.Im(beta, w)

Parameters:
    beta : float - Beta parameter (0..1).
    w : float - Circular frequency.

Returns: float Real part of the Fourier transformed derivative of the Kohlrausch function, or double.NaN if the function can not be evaluated (can happen for beta smaller than 1/64).

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for all frequencies. In dependence on the parameters, either a series expansion (accuracy ca. 1E-14) or a bivariate Akima spline (accuracy 1E-4) is used.

This is the imaginary part of the Fourier transform (in Mathematica notation): Im[Integrate[-D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. For beta smaller than one, the return value is always negative.

Wanted! Who can contribute to a more accurate interpolation between the points? (The points itself are calculated with an accuracy of 1E-18.)

beta : float

Beta parameter (0..1).

w : float

Circular frequency.

Returns: float

Real part of the Fourier transformed derivative of the Kohlrausch function, or double.NaN if the function can not be evaluated (can happen for beta smaller than 1/64).

Kohlrausch.Im1(beta, z)

Full Usage: Kohlrausch.Im1(beta, z)

Parameters:
    beta : float - Beta parameter.
    z : float - Circular frequency.

Returns: float Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies.

This is the imaginary part of the Fourier transform (in Mathematica notation): Im[Integrate[D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. The sign of the return value here is positive!.

beta : float

Beta parameter.

z : float

Circular frequency.

Returns: float

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Kohlrausch.Im1OldStyle(beta, z)

Full Usage: Kohlrausch.Im1OldStyle(beta, z)

Parameters:
    beta : float - Beta parameter.
    z : float - Circular frequency.

Returns: float Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies.

This is the imaginary part of the Fourier transform (in Mathematica notation): Im[Integrate[D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. The sign of the return value here is positive!.

beta : float

Beta parameter.

z : float

Circular frequency.

Returns: float

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Kohlrausch.Im2(beta, z)

Full Usage: Kohlrausch.Im2(beta, z)

Parameters:
    beta : float - Beta parameter.
    z : float - Circular frequency.

Returns: float Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for low frequencies.

This is the imaginary part of the Fourier transform (in Mathematica notation): Im[Integrate[D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. The sign of the return value here is positive!.

beta : float

Beta parameter.

z : float

Circular frequency.

Returns: float

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Kohlrausch.Im2SmallBeta(beta, z)

Full Usage: Kohlrausch.Im2SmallBeta(beta, z)

Parameters:
    beta : float - Beta parameter.
    z : float - Circular frequency.

Returns: float Imaginary part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, or double.NaN if the series not converges.Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, and beta<=1/20..

This is the imaginary part of the Fourier transform (in Mathematica notation): Im[Integrate[D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. The sign of the return value here is positive!.

beta : float

Beta parameter.

z : float

Circular frequency.

Returns: float

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, or double.NaN if the series not converges.Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Kohlrausch.Re(beta, w)

Full Usage: Kohlrausch.Re(beta, w)

Parameters:
    beta : float - Beta parameter (0..1).
    w : float - Circular frequency.

Returns: float Real part of the Fourier transformed derivative of the Kohlrausch function, or double.NaN if the function can not be evaluated (can happen for beta smaller than 1/64).

Real part of the Fourier transformed derivative of the Kohlrausch function for all frequencies. In dependence on the parameters, either a series expansion (accuracy ca. 1E-14) or a bivariate akima spline (accuracy 1E-4) is used.

This is the real part of the Fourier transform (in Mathematica notation): Re[Integrate[-D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. For beta smaller than one, the return value is always positive.

Wanted! Who can contribute to a more accurate interpolation between the points? (The points itself are calculated with an accuracy of 1E-18.)

beta : float

Beta parameter (0..1).

w : float

Circular frequency.

Returns: float

Real part of the Fourier transformed derivative of the Kohlrausch function, or double.NaN if the function can not be evaluated (can happen for beta smaller than 1/64).

Kohlrausch.Re1(beta, z)

Full Usage: Kohlrausch.Re1(beta, z)

Parameters:
    beta : float - Beta parameter.
    z : float - Circular frequency.

Returns: float Real part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Real part of the Fourier transformed derivative of the Kohlrausch function for high frequencies.

This is the real part of the Fourier transform (in Mathematica notation): Re[Integrate[-D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. For beta smaller than one, the return value is always positive.

beta : float

Beta parameter.

z : float

Circular frequency.

Returns: float

Real part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Kohlrausch.Re1OldStyle(beta, z)

Full Usage: Kohlrausch.Re1OldStyle(beta, z)

Parameters:
    beta : float - Beta parameter.
    z : float - Circular frequency.

Returns: float Real part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Real part of the Fourier transformed derivative of the Kohlrausch function for high frequencies.

beta : float

Beta parameter.

z : float

Circular frequency.

Returns: float

Real part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Kohlrausch.Re2(beta, z)

Full Usage: Kohlrausch.Re2(beta, z)

Parameters:
    beta : float - Beta parameter.
    z : float - Circular frequency, must be much lesser than one.

Returns: float Real part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, or double.NaN if the series not converges.

Real part of the Fourier transformed derivative of the Kohlrausch function for low frequencies.

This is the real part of the Fourier transform (in Mathematica notation): Re[Integrate[-D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. For beta smaller than one, the return value is always positive.

beta : float

Beta parameter.

z : float

Circular frequency, must be much lesser than one.

Returns: float

Real part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, or double.NaN if the series not converges.

Kohlrausch.Re2SmallBeta(beta, z)

Full Usage: Kohlrausch.Re2SmallBeta(beta, z)

Parameters:
    beta : float - Beta parameter.
    z : float - Circular frequency, must be much lesser than one.

Returns: float Real part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, or double.NaN if the series not converges.

Real part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, and beta<=1/20..

This is the real part of the Fourier transform (in Mathematica notation): Re[Integrate[-D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. For beta smaller than one, the return value is always positive.

beta : float

Beta parameter.

z : float

Circular frequency, must be much lesser than one.

Returns: float

Real part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, or double.NaN if the series not converges.

Kohlrausch.ReIm(beta, w)

Full Usage: Kohlrausch.ReIm(beta, w)

Parameters:
    beta : float - Beta parameter (0..1).
    w : float - Circular frequency.

Returns: Complex Fourier transformed derivative of the Kohlrausch function, or Complex.NaN if the function can not be evaluated (can happen for beta smaller than 1/64).

Fourier transformed derivative of the Kohlrausch function for all frequencies. In dependence on the parameters, either a series expansion (accuracy ca. 1E-14) or a bivariate Akima spline (accuracy 1E-4) is used.

This is the imaginary part of the Fourier transform (in Mathematica notation): Integrate[-D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]. For beta smaller than one, this is a retardation function, so the real part is positive and the imaginary part is negative.

Wanted! Who can contribute to a more accurate interpolation between the points? (The points itself are calculated with an accuracy of 1E-18.)

beta : float

Beta parameter (0..1).

w : float

Circular frequency.

Returns: Complex

Fourier transformed derivative of the Kohlrausch function, or Complex.NaN if the function can not be evaluated (can happen for beta smaller than 1/64).