DVJAC Type

Constructors

Constructor Description

DVJAC(dvnorm, dcopy, dscal, dgefa, dacopy, dgbfa, DVOD01, DVOD02)

Full Usage: DVJAC(dvnorm, dcopy, dscal, dgefa, dacopy, dgbfa, DVOD01, DVOD02)

Parameters:

dvnorm : DVNORM
dcopy : DCOPY
dscal : DSCAL
dgefa : DGEFA
dacopy : DACOPY
dgbfa : DGBFA
DVOD01 : CommonBlock
DVOD02 : CommonBlock

DVJAC()

Full Usage: DVJAC()

Instance members

Instance member Description

this.Run

Full Usage: this.Run

Parameters:
    Y : byref<float[]> - = Vector containing predicted values on entry.
    offset_y : int -
    YH : float[] - = The Nordsieck array, an LDYH by LMAX array, input.
    offset_yh : int -
    LDYH : int - = A constant .ge. N, the first dimension of YH, input.
    EWT : float[] - = An error weight vector of length N.
    offset_ewt : int -
    FTEM : byref<float[]> -
    offset_ftem : int -
    SAVF : float[] - = Array containing f evaluated at predicted y, input.
    offset_savf : int -
    WM : byref<float[]> - = Real work space for matrices. In the output, it containS the inverse diagonal matrix if MITER = 3 and the LU decomposition of P if MITER is 1, 2 , 4, or 5. Storage of matrix elements starts at WM(3). Storage of the saved Jacobian starts at WM(LOCJS). WM also contains the following matrix-related data: WM(1) = SQRT(UROUND), used in numerical Jacobian step. WM(2) = H*RL1, saved for later use if MITER = 3.
    offset_wm : int -
    IWM : byref<int[]> - = Integer work space containing pivot information, starting at IWM(31), if MITER is 1, 2, 4, or 5. IWM also contains band parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.
    offset_iwm : int -
    F : IFEX - = Dummy name for the user supplied subroutine for f.
    JAC : IJEX - = Dummy name for the user supplied Jacobian subroutine.
    IERPJ : byref<int> - = Output error flag, = 0 if no trouble, 1 if the P matrix is found to be singular.
    RPAR : float[] -
    offset_rpar : int -
    IPAR : int[] -
    offset_ipar : int -

Y : byref<float[]>

= Vector containing predicted values on entry.

offset_y : int

YH : float[]

= The Nordsieck array, an LDYH by LMAX array, input.

offset_yh : int

LDYH : int

= A constant .ge. N, the first dimension of YH, input.

EWT : float[]

= An error weight vector of length N.

offset_ewt : int

FTEM : byref<float[]>

offset_ftem : int

SAVF : float[]

= Array containing f evaluated at predicted y, input.

offset_savf : int

WM : byref<float[]>

= Real work space for matrices. In the output, it containS the inverse diagonal matrix if MITER = 3 and the LU decomposition of P if MITER is 1, 2 , 4, or 5. Storage of matrix elements starts at WM(3). Storage of the saved Jacobian starts at WM(LOCJS). WM also contains the following matrix-related data: WM(1) = SQRT(UROUND), used in numerical Jacobian step. WM(2) = H*RL1, saved for later use if MITER = 3.

offset_wm : int

IWM : byref<int[]>

= Integer work space containing pivot information, starting at IWM(31), if MITER is 1, 2, 4, or 5. IWM also contains band parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.

offset_iwm : int

F : IFEX

= Dummy name for the user supplied subroutine for f.

JAC : IJEX

= Dummy name for the user supplied Jacobian subroutine.

IERPJ : byref<int>

= Output error flag, = 0 if no trouble, 1 if the P matrix is found to be singular.

RPAR : float[]

offset_rpar : int

IPAR : int[]

offset_ipar : int