StableDistributionSymmetric Type

Represents a symmetric stable distribution in Zolotarev's parametrization.

References:

[1] Matsui M., Takemura A.: "Some Improvements in Numerical Evaluation of Symmetric Stable Densities and its Derivatives", Discussion Paper, CIRJE-F-292, Tokio, August 2004

Constructors

Constructor Description

StableDistributionSymmetric(gen)

Full Usage: StableDistributionSymmetric(gen)

Parameters:

gen : Generator

Static members

Static member Description

StableDistributionSymmetric.CCDF(x, alpha)

Full Usage: StableDistributionSymmetric.CCDF(x, alpha)

Parameters:
    x : float
    alpha : float

Returns: float

x : float
alpha : float
Returns: float

StableDistributionSymmetric.CCDF(x, alpha, tempStorage, precision)

Full Usage: StableDistributionSymmetric.CCDF(x, alpha, tempStorage, precision)

Parameters:
    x : float
    alpha : float
    tempStorage : byref<obj>
    precision : float

Returns: float

x : float
alpha : float
tempStorage : byref<obj>
precision : float
Returns: float

StableDistributionSymmetric.CDF(x, alpha)

Full Usage: StableDistributionSymmetric.CDF(x, alpha)

Parameters:
    x : float
    alpha : float

Returns: float

x : float
alpha : float
Returns: float

StableDistributionSymmetric.CDF(x, alpha, tempStorage, precision)

Full Usage: StableDistributionSymmetric.CDF(x, alpha, tempStorage, precision)

Parameters:
    x : float
    alpha : float
    tempStorage : byref<obj>
    precision : float

Returns: float

x : float
alpha : float
tempStorage : byref<obj>
precision : float
Returns: float

StableDistributionSymmetric.GetAgt1GnParameter(x, alpha, factorp, factorw, dev, logPrefactor)

Full Usage: StableDistributionSymmetric.GetAgt1GnParameter(x, alpha, factorp, factorw, dev, logPrefactor)

Parameters:
    x : float
    alpha : float
    factorp : byref<float>
    factorw : byref<float>
    dev : byref<float>
    logPrefactor : byref<float>

x : float
alpha : float
factorp : byref<float>
factorw : byref<float>
dev : byref<float>
logPrefactor : byref<float>

StableDistributionSymmetric.GetAlt1GnParameter(x, alpha, factorp, facdiv, dev, logPdfPrefactor)

Full Usage: StableDistributionSymmetric.GetAlt1GnParameter(x, alpha, factorp, facdiv, dev, logPdfPrefactor)

Parameters:
    x : float
    alpha : float
    factorp : byref<float>
    facdiv : byref<float>
    dev : byref<float>
    logPdfPrefactor : byref<float>

x : float
alpha : float
factorp : byref<float>
facdiv : byref<float>
dev : byref<float>
logPdfPrefactor : byref<float>

StableDistributionSymmetric.GetAlt1GpParameterByGamma(x, alpha, factorp, facdiv, dev, logPdfPrefactor)

Full Usage: StableDistributionSymmetric.GetAlt1GpParameterByGamma(x, alpha, factorp, facdiv, dev, logPdfPrefactor)

Parameters:
    x : float
    alpha : float
    factorp : byref<float>
    facdiv : byref<float>
    dev : byref<float>
    logPdfPrefactor : byref<float>

x : float
alpha : float
factorp : byref<float>
facdiv : byref<float>
dev : byref<float>
logPdfPrefactor : byref<float>

StableDistributionSymmetric.PDF(x, alpha)

Full Usage: StableDistributionSymmetric.PDF(x, alpha)

Parameters:
    x : float
    alpha : float

Returns: float

x : float
alpha : float
Returns: float

StableDistributionSymmetric.PDF(x, alpha, tempStorage, precision)

Full Usage: StableDistributionSymmetric.PDF(x, alpha, tempStorage, precision)

Parameters:
    x : float - The argument.
    alpha : float -
    tempStorage : byref<obj> - Object which can be used to speed up subsequent calculations of the function. At the first call, provide an object initialized with and provide this object for the following calculations.
    precision : float - Goal for the relative precision.

Returns: float

Calculates the probability density using either series expansion for small or big arguments, or a integration in the intermediate range.

x : float

The argument.

alpha : float

tempStorage : byref<obj>

Object which can be used to speed up subsequent calculations of the function. At the first call, provide an object initialized with and provide this object for the following calculations.

precision : float

Goal for the relative precision.

Returns: float

StableDistributionSymmetric.PDFAlphaBetween01And02(x, alpha, precision, tempStorage)

Full Usage: StableDistributionSymmetric.PDFAlphaBetween01And02(x, alpha, precision, tempStorage)

Parameters:
    x : float -
    alpha : float -
    precision : float -
    tempStorage : byref<obj> -

Returns: float

Calculation of the PDF if alpha is inbetween 0.1 and 0.2. For small x (1E-16), the accuracy at alpha=0.1 is only 1E-7.

x : float

alpha : float

precision : float

tempStorage : byref<obj>

Returns: float

StableDistributionSymmetric.PDFAlphaBetween02And099(x, alpha, precision, tempStorage)

Full Usage: StableDistributionSymmetric.PDFAlphaBetween02And099(x, alpha, precision, tempStorage)

Parameters:
    x : float -
    alpha : float -
    precision : float -
    tempStorage : byref<obj> -

Returns: float

Calculation of the PDF if alpha is inbetween 0.2 and 0.99. For small x (1E-8), the accuracy at alpha=0.2 is only 1E-7.

x : float

alpha : float

precision : float

tempStorage : byref<obj>

Returns: float

StableDistributionSymmetric.PDFAlphaBetween099And101(x, alpha, precision, tempStorage)

Full Usage: StableDistributionSymmetric.PDFAlphaBetween099And101(x, alpha, precision, tempStorage)

Parameters:
    x : float -
    alpha : float -
    precision : float -
    tempStorage : byref<obj> -

Returns: float

Calculation of the PDF if alpha is inbetween 0.99 and 1.01.

x : float

alpha : float

precision : float

tempStorage : byref<obj>

Returns: float

StableDistributionSymmetric.PDFAlphaBetween101And199999(x, alpha, precision, tempStorage)

Full Usage: StableDistributionSymmetric.PDFAlphaBetween101And199999(x, alpha, precision, tempStorage)

Parameters:
    x : float -
    alpha : float -
    precision : float -
    tempStorage : byref<obj> -

Returns: float

Calculation of the PDF if alpha is inbetween 0.2 and 0.99. For small x (1E-8), the accuracy at alpha=0.2 is only 1E-7.

x : float

alpha : float

precision : float

tempStorage : byref<obj>

Returns: float

StableDistributionSymmetric.PDFAlphaBetween199999And2(x, alpha, precision, tempStorage)

Full Usage: StableDistributionSymmetric.PDFAlphaBetween199999And2(x, alpha, precision, tempStorage)

Parameters:
    x : float -
    alpha : float -
    precision : float -
    tempStorage : byref<obj> -

Returns: float

Calculation of the PDF if alpha is inbetween 1.99999 and 2. For small x ( max 7), the asymptotic expansion is used. For big x, the maximum value resulting from direct integration and series expansion w.r.t. alpha is used.

x : float

alpha : float

precision : float

tempStorage : byref<obj>

Returns: float

StableDistributionSymmetric.PDFIntegration(x, alpha, precision, tempStorage)

Full Usage: StableDistributionSymmetric.PDFIntegration(x, alpha, precision, tempStorage)

Parameters:
    x : float
    alpha : float
    precision : float
    tempStorage : byref<obj>

Returns: float

x : float
alpha : float
precision : float
tempStorage : byref<obj>
Returns: float

StableDistributionSymmetric.PDFSeriesBigX(z, alpha)

Full Usage: StableDistributionSymmetric.PDFSeriesBigX(z, alpha)

Parameters:
    z : float - Circular frequency.
    alpha : float - Alpha (broadness) parameter.

Returns: float Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies.

This is the imaginary part of the Fourier transform (in Mathematica notation): Im[Integrate[D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. The sign of the return value here is positive!.

z : float

Circular frequency.

alpha : float

Alpha (broadness) parameter.

Returns: float

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

StableDistributionSymmetric.PDFSeriesSmallX(z, alpha)

Full Usage: StableDistributionSymmetric.PDFSeriesSmallX(z, alpha)

Parameters:
    z : float - Circular frequency.
    alpha : float - Beta parameter.

Returns: float Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for low frequencies.

This is the imaginary part of the Fourier transform (in Mathematica notation): Im[Integrate[D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. The sign of the return value here is positive!.

z : float

Circular frequency.

alpha : float

Beta parameter.

Returns: float

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

StableDistributionSymmetric.PDFSeriesSmallXSmallAlpha(z, alpha)

Full Usage: StableDistributionSymmetric.PDFSeriesSmallXSmallAlpha(z, alpha)

Parameters:
    z : float - Circular frequency.
    alpha : float - Alpha (broadness) parameter.

Returns: float Imaginary part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, or double.NaN if the series not converges.Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, and beta<=1/20..

This is the imaginary part of the Fourier transform (in Mathematica notation): Im[Integrate[D[Exp[-t^beta],t]*Exp[-I w t],{t, 0, Infinity}]]. The sign of the return value here is positive!.

z : float

Circular frequency.

alpha : float

Alpha (broadness) parameter.

Returns: float

Imaginary part of the Fourier transformed derivative of the Kohlrausch function for low frequencies, or double.NaN if the series not converges.Imaginary part of the Fourier transformed derivative of the Kohlrausch function for high frequencies, or double.NaN if the series not converges.

StableDistributionSymmetric.PDFTaylorExpansionAroundAlphaOne(x, alpha)

Full Usage: StableDistributionSymmetric.PDFTaylorExpansionAroundAlphaOne(x, alpha)

Parameters:
    x : float
    alpha : float

Returns: float

x : float
alpha : float
Returns: float

StableDistributionSymmetric.Quantile(p, alpha)

Full Usage: StableDistributionSymmetric.Quantile(p, alpha)

Parameters:
    p : float
    alpha : float

Returns: float

p : float
alpha : float
Returns: float

StableDistributionSymmetric.QuantileCCDF(q, alpha)

Full Usage: StableDistributionSymmetric.QuantileCCDF(q, alpha)

Parameters:
    q : float
    alpha : float

Returns: float

q : float
alpha : float
Returns: float

StableDistributionSymmetric.XZCDF(x, alpha)

Full Usage: StableDistributionSymmetric.XZCDF(x, alpha)

Parameters:
    x : float
    alpha : float

Returns: float

x : float
alpha : float
Returns: float

StableDistributionSymmetric.XZCDF(x, alpha, tempStorage, precision)

Full Usage: StableDistributionSymmetric.XZCDF(x, alpha, tempStorage, precision)

Parameters:
    x : float
    alpha : float
    tempStorage : byref<obj>
    precision : float

Returns: float

x : float
alpha : float
tempStorage : byref<obj>
precision : float
Returns: float