GammaRelated Type

Contains the gamma function and functions related to this function.

Constructors

Constructor Description

GammaRelated()

Full Usage: GammaRelated()

Static members

Static member Description

GammaRelated.Beta(a, b)

Full Usage: GammaRelated.Beta(a, b)

Parameters:
    a : float -
    b : float -

Returns: float The complete beta function of arguments a and b.

Beta(a,b) calculates the complete beta function for double precision arguments a and b using Exp(LnBeta(a,b)).

a : float

b : float

Returns: float

The complete beta function of arguments a and b.

GammaRelated.Beta(a, b, bDebug)

Full Usage: GammaRelated.Beta(a, b, bDebug)

Parameters:
    a : float -
    b : float -
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float The complete beta function of arguments a and b.

Beta(a,b) calculates the complete beta function for double precision arguments a and b using Exp(LnBeta(a,b)).

a : float

b : float

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

The complete beta function of arguments a and b.

GammaRelated.BetaI(x, a, b)

Full Usage: GammaRelated.BetaI(x, a, b)

Parameters:
    x : float - Function argument.
    a : float - First exponent, see summary.
    b : float - Second exponent, see summary.

Returns: float The incomplete beta function of the parameters x, a and b.

BetaI(x,a,b) calculates the double precision incomplete beta function. BetaI(x,a,b) = Integral(0,x) t**(a-1) (1-t)**(b-1) dt

x : float

Function argument.

a : float

First exponent, see summary.

b : float

Second exponent, see summary.

Returns: float

The incomplete beta function of the parameters x, a and b.

GammaRelated.BetaI(x, a, b, bDebug)

Full Usage: GammaRelated.BetaI(x, a, b, bDebug)

Parameters:
    x : float - Function argument.
    a : float - First exponent, see summary.
    b : float - Second exponent, see summary.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float The incomplete beta function of the parameters x, a and b.

BetaI(x,a,b) calculates the double precision incomplete beta function. BetaI(x,a,b) = Integral(0,x) t**(a-1) (1-t)**(b-1) dt

x : float

Function argument.

a : float

First exponent, see summary.

b : float

Second exponent, see summary.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

The incomplete beta function of the parameters x, a and b.

GammaRelated.BetaIR(x, a, b)

Full Usage: GammaRelated.BetaIR(x, a, b)

Parameters:
    x : float - upper limit of integration. x must be in (0,1) inclusive.
    a : float - first beta distribution parameter. a must be > 0.
    b : float - second beta distribution parameter. b must be > 0.

Returns: float The incomplete beta function ratio.

BetaIR(x,a,b) calculates the double precision incomplete beta function ratio.

                             B_x(a,b)    Integral(0,x) t**(a-1) (1-t)**(b-1) dt
                 I_x(a,b) = --------- = ---------------------------------------
                             B(a,b)                   B(a,b)

             The incomplete beta function ratio is the probability that a
             random variable from a beta distribution having parameters a and b
             will be less than or equal to x.
             This is a translation from the Fortran version of DBETAI(X,PIN,QIN), SLATEC,
             FNLIB, CATEGORY C7F, REVISION 920528, originally written by Fullerton W.,(LANL)
             to C++.
            
             References: Nancy E. Bosten and E. L. Battiste, Remark on Algorithm 179,
                         Communications of the ACM 17, 3 (March 1974), pp. 156.
            
             Calls   LnBeta(a,b)

x : float

upper limit of integration. x must be in (0,1) inclusive.

a : float

first beta distribution parameter. a must be > 0.

b : float

second beta distribution parameter. b must be > 0.

Returns: float

The incomplete beta function ratio.

GammaRelated.BetaIR(x, a, b, bDebug)

Full Usage: GammaRelated.BetaIR(x, a, b, bDebug)

Parameters:
    x : float - upper limit of integration. x must be in (0,1) inclusive.
    a : float - first beta distribution parameter. a must be > 0.
    b : float - second beta distribution parameter. b must be > 0.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float The incomplete beta function ratio.

BetaIR(x,a,b) calculates the double precision incomplete beta function ratio.

                             B_x(a,b)    Integral(0,x) t**(a-1) (1-t)**(b-1) dt
                 I_x(a,b) = --------- = ---------------------------------------
                             B(a,b)                   B(a,b)

             The incomplete beta function ratio is the probability that a
             random variable from a beta distribution having parameters a and b
             will be less than or equal to x.
             This is a translation from the Fortran version of DBETAI(X,PIN,QIN), SLATEC,
             FNLIB, CATEGORY C7F, REVISION 920528, originally written by Fullerton W.,(LANL)
             to C++.
            
             References: Nancy E. Bosten and E. L. Battiste, Remark on Algorithm 179,
                         Communications of the ACM 17, 3 (March 1974), pp. 156.
            
             Calls   LnBeta(a,b)

x : float

upper limit of integration. x must be in (0,1) inclusive.

a : float

first beta distribution parameter. a must be > 0.

b : float

second beta distribution parameter. b must be > 0.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

The incomplete beta function ratio.

GammaRelated.BetaRegularized(x, a, b)

Full Usage: GammaRelated.BetaRegularized(x, a, b)

Parameters:
    x : float - upper limit of integration. x must be in (0,1) inclusive.
    a : float - first beta distribution parameter. a must be > 0.
    b : float - second beta distribution parameter. b must be > 0.

Returns: float The incomplete beta function ratio.

BetaRegularized(x,a,b) calculates the double precision incomplete beta function ratio.

                             B_x(a,b)    Integral(0,x) t**(a-1) (1-t)**(b-1) dt
                 I_x(a,b) = --------- = ---------------------------------------
                             B(a,b)                   B(a,b)

             The incomplete beta function ratio is the probability that a
             random variable from a beta distribution having parameters a and b
             will be less than or equal to x.
             This is a translation from the Fortran version of DBETAI(X,PIN,QIN), SLATEC,
             FNLIB, CATEGORY C7F, REVISION 920528, originally written by Fullerton W.,(LANL)
             to C++.
            
             References: Nancy E. Bosten and E. L. Battiste, Remark on Algorithm 179,
                         Communications of the ACM 17, 3 (March 1974), pp. 156.
            
             Calls   LnBeta(a,b)

x : float

upper limit of integration. x must be in (0,1) inclusive.

a : float

first beta distribution parameter. a must be > 0.

b : float

second beta distribution parameter. b must be > 0.

Returns: float

The incomplete beta function ratio.

GammaRelated.Binomial(n, m)

Full Usage: GammaRelated.Binomial(n, m)

Parameters:
    n : float - First argument.
    m : float - Second argument.

Returns: float The binomial coefficient ( n over m).

Gives the binomial coefficient ( n over m).

n : float

First argument.

m : float

Second argument.

Returns: float

The binomial coefficient ( n over m).

GammaRelated.Fac(n)

Full Usage: GammaRelated.Fac(n)

Parameters:
    n : int - The argument n.

Returns: float The factorial of n.

Fac(n) calculates the double precision factorial for the integer argument n.

This is a translation from the Fortran version of SLATEC, FNLIB, CATEGORY C1, REVISION 900315, originally written by Fullerton W.,(LANL) to C++.

n : int

The argument n.

Returns: float

The factorial of n.

GammaRelated.Fac(n, bDebug)

Full Usage: GammaRelated.Fac(n, bDebug)

Parameters:
    n : int - The argument n.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float The factorial of n.

Fac(n) calculates the double precision factorial for the integer argument n.

This is a translation from the Fortran version of SLATEC, FNLIB, CATEGORY C1, REVISION 900315, originally written by Fullerton W.,(LANL) to C++.

n : int

The argument n.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

The factorial of n.

GammaRelated.Gamma(x)

Full Usage: GammaRelated.Gamma(x)

Parameters:
    x : float - The function argument x.

Returns: float The Gamma function of the argument x.

Gamma(x) calculates the double precision complete Gamma function for double precision argument x.

             This is a translation from the Fortran version of SLATEC, FNLIB,
             CATEGORY C7A, REVISION 920618, originally written by Fullerton W.,(LANL)
             to C++.
            
             Series for GAM        on the interval  0.          to  1.00000E+00
                                                    with weighted error   5.79E-32
                                                     log weighted error  31.24
                                           significant figures required  30.00
                                                decimal places required  32.05

x : float

The function argument x.

Returns: float

The Gamma function of the argument x.

GammaRelated.Gamma(x, bDebug)

Full Usage: GammaRelated.Gamma(x, bDebug)

Parameters:
    x : float - The function argument x.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float The Gamma function of the argument x.

Gamma(x) calculates the double precision complete Gamma function for double precision argument x.

             This is a translation from the Fortran version of SLATEC, FNLIB,
             CATEGORY C7A, REVISION 920618, originally written by Fullerton W.,(LANL)
             to C++.
            
             Series for GAM        on the interval  0.          to  1.00000E+00
                                                    with weighted error   5.79E-32
                                                     log weighted error  31.24
                                           significant figures required  30.00
                                                decimal places required  32.05

x : float

The function argument x.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

The Gamma function of the argument x.

GammaRelated.Gamma(a, z0, bDebug)

Full Usage: GammaRelated.Gamma(a, z0, bDebug)

Parameters:
    a : float - The function argument.
    z0 : float - The lower boundary of integration.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float Complementary incomplete Gamma function of arguments a and z0.

Evaluate the complementary incomplete Gamma function Gamma(a,z0) = integral from z0 to infinity of exp(-t) * t**(a-1) The order of parameters is the same as the Mathematica function Gamma[a,z0]. Gamma(a,z0) is evaluated for arbitrary real values of A and for non-negative values of x (even though Gamma is defined for z0 < 0.0), except that for z0 = 0 and a <= 0.0, Gamma is undefined.

             A slight deterioration of 2 or 3 digits accuracy will occur when
             GammaIC is very large or very small in absolute value, because log-
             arithmic variables are used.  Also, if the parameter A is very close
             to a negative integer (but not a negative integer), there is a loss
             of accuracy, which is reported if the result is less than half
             machine precision.
            
             This is a translation from the Fortran version of DGAMIC, SLATEC, FNLIB,
             CATEGORY C7E, REVISION 920528, originally written by Fullerton W.,(LANL)
             to C++.
            
             References:
            
             (1) W. Gautschi, A computational procedure for incomplete
                 gamma functions, ACM Transactions on Mathematical
                 Software 5, 4 (December 1979), pp. 466-481.
             (2) W. Gautschi, Incomplete gamma functions, Algorithm 542,
                 ACM Transactions on Mathematical Software 5, 4
                 (December 1979), pp. 482-489.
            
             Routines called: d9gmit, d9gmic, d9lgic, d9lgit, LnGamma(x), LnGamma(x,a)

a : float

The function argument.

z0 : float

The lower boundary of integration.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

Complementary incomplete Gamma function of arguments a and z0.

GammaRelated.Gamma(a, z0)

Full Usage: GammaRelated.Gamma(a, z0)

Parameters:
    a : float - The function argument.
    z0 : float - The lower boundary of integration.

Returns: float Complementary incomplete Gamma function of arguments a and z0.

Evaluate the complementary incomplete Gamma function Gamma(a,z0) = integral from z0 to infinity of exp(-t) * t**(a-1) The order of parameters is the same as the Mathematica function Gamma[a,z0]. Gamma(a,z0) is evaluated for arbitrary real values of A and for non-negative values of x (even though Gamma is defined for z0 < 0.0), except that for z0 = 0 and a <= 0.0, Gamma is undefined.

             A slight deterioration of 2 or 3 digits accuracy will occur when
             GammaIC is very large or very small in absolute value, because log-
             arithmic variables are used.  Also, if the parameter A is very close
             to a negative integer (but not a negative integer), there is a loss
             of accuracy, which is reported if the result is less than half
             machine precision.
            
             This is a translation from the Fortran version of DGAMIC, SLATEC, FNLIB,
             CATEGORY C7E, REVISION 920528, originally written by Fullerton W.,(LANL)
             to C++.
            
             References:
            
             (1) W. Gautschi, A computational procedure for incomplete
                 gamma functions, ACM Transactions on Mathematical
                 Software 5, 4 (December 1979), pp. 466-481.
             (2) W. Gautschi, Incomplete gamma functions, Algorithm 542,
                 ACM Transactions on Mathematical Software 5, 4
                 (December 1979), pp. 482-489.
            
             Routines called: d9gmit, d9gmic, d9lgic, d9lgit, LnGamma(x), LnGamma(x,a)

a : float

The function argument.

z0 : float

The lower boundary of integration.

Returns: float

Complementary incomplete Gamma function of arguments a and z0.

GammaRelated.Gamma(z)

Full Usage: GammaRelated.Gamma(z)

Parameters:
    z : Complex - The complex argument.

Returns: Complex The Gamma function of the complex argument z.

Complex Gamma function.

July 1977 edition. w. fullerton, c3, los alamos scientific lab. A preliminary version that is portable, but not accurate enough.

z : Complex

The complex argument.

Returns: Complex

The Gamma function of the complex argument z.

GammaRelated.Gamma(z, bDebug)

Full Usage: GammaRelated.Gamma(z, bDebug)

Parameters:
    z : Complex - The complex argument.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: Complex The Gamma function of the complex argument z.

Complex Gamma function.

July 1977 edition. w. fullerton, c3, los alamos scientific lab. A preliminary version that is portable, but not accurate enough.

z : Complex

The complex argument.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: Complex

The Gamma function of the complex argument z.

GammaRelated.GammaI(x, a)

Full Usage: GammaRelated.GammaI(x, a)

Parameters:
    x : float - The function value x.
    a : float - The exponent.

Returns: float The incomplete gamma function of x and a.

Evaluate the incomplete gamma function defined by GammaI = integral from t = 0 to x of exp(-t) * t**(a-1.0) GammaI(x,a) is evaluated for positive values of a and non-negative values of x. A slight deterioration of 2 or 3 digits accuracy will occur when GammaI is very large or very small, because logarithmic variables are used. The function and both arguments are double precision.

             This is a translation from the Fortran version of DGAMI, SLATEC, FNLIB,
             CATEGORY C7E, REVISION 900315, originally written by Fullerton W.,(LANL)
             to C++.
            
             Routines called:
               LnGamma(x)      - logarithm of the Gamma function
               GammaIT(x,a)    - Tricomi's incomplete gamma function

x : float

The function value x.

a : float

The exponent.

Returns: float

The incomplete gamma function of x and a.

GammaRelated.GammaIC(x, a)

Full Usage: GammaRelated.GammaIC(x, a)

Parameters:
    x : float - The function argument.
    a : float -

Returns: float Complementary incomplete Gamma function of arguments x and a.

Evaluate the complementary incomplete Gamma function GammaIC(x,a) = integral from x to infinity of exp(-t) * t**(a-1) GammaIC(x,a) is evaluated for arbitrary real values of A and for non-negative values of x (even though GammaIC is defined for x < 0.0), except that for x = 0 and a <= 0.0, GammaIC is undefined.

             A slight deterioration of 2 or 3 digits accuracy will occur when
             GammaIC is very large or very small in absolute value, because log-
             arithmic variables are used.  Also, if the parameter A is very close
             to a negative integer (but not a negative integer), there is a loss
             of accuracy, which is reported if the result is less than half
             machine precision.
            
             This is a translation from the Fortran version of DGAMIC, SLATEC, FNLIB,
             CATEGORY C7E, REVISION 920528, originally written by Fullerton W.,(LANL)
             to C++.
            
             References:
            
             (1) W. Gautschi, A computational procedure for incomplete
                 gamma functions, ACM Transactions on Mathematical
                 Software 5, 4 (December 1979), pp. 466-481.
             (2) W. Gautschi, Incomplete gamma functions, Algorithm 542,
                 ACM Transactions on Mathematical Software 5, 4
                 (December 1979), pp. 482-489.
            
             Routines called: d9gmit, d9gmic, d9lgic, d9lgit, LnGamma(x), LnGamma(x,a)

x : float

The function argument.

a : float

Returns: float

Complementary incomplete Gamma function of arguments x and a.

GammaRelated.GammaIC(x, a, bDebug)

Full Usage: GammaRelated.GammaIC(x, a, bDebug)

Parameters:
    x : float - The function argument.
    a : float -
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float Complementary incomplete Gamma function of arguments x and a.

Evaluate the complementary incomplete Gamma function GammaIC(x,a) = integral from x to infinity of exp(-t) * t**(a-1) GammaIC(x,a) is evaluated for arbitrary real values of A and for non-negative values of x (even though GammaIC is defined for x < 0.0), except that for x = 0 and a <= 0.0, GammaIC is undefined.

             A slight deterioration of 2 or 3 digits accuracy will occur when
             GammaIC is very large or very small in absolute value, because log-
             arithmic variables are used.  Also, if the parameter A is very close
             to a negative integer (but not a negative integer), there is a loss
             of accuracy, which is reported if the result is less than half
             machine precision.
            
             This is a translation from the Fortran version of DGAMIC, SLATEC, FNLIB,
             CATEGORY C7E, REVISION 920528, originally written by Fullerton W.,(LANL)
             to C++.
            
             References:
            
             (1) W. Gautschi, A computational procedure for incomplete
                 gamma functions, ACM Transactions on Mathematical
                 Software 5, 4 (December 1979), pp. 466-481.
             (2) W. Gautschi, Incomplete gamma functions, Algorithm 542,
                 ACM Transactions on Mathematical Software 5, 4
                 (December 1979), pp. 482-489.
            
             Routines called: d9gmit, d9gmic, d9lgic, d9lgit, LnGamma(x), LnGamma(x,a)

x : float

The function argument.

a : float

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

Complementary incomplete Gamma function of arguments x and a.

GammaRelated.GammaIT(x, a)

Full Usage: GammaRelated.GammaIT(x, a)

Parameters:
    x : float - The function argument x.
    a : float - The function argument a.

Returns: float Tricomi's incomplete gamma function of x and a.

GammaIT(x,a) evaluates Tricomi's incomplete gamma function defined by GammaIT = x**(-a)/Gamma(a) * integral from 0 to x of exp(-t) * t**(a-1.0) for a > 0.0 and by analytic continuation for a <= 0.0. Gamma(x) is the complete gamma function of x.

             GammaIT(x,a) is evaluated for arbitrary real values of a and for
             non-negative values of x (even though GammaIT is defined for x < 0.0),
             except that for x = 0 and a <= 0.0, GammaIT is infinite,
             which is a fatal error.
            
             The function and both arguments are double.
             A slight deterioration of 2 or 3 digits accuracy will occur when
             GammaIT is very large or very small in absolute value, because log-
             arithmic variables are used.  Also, if the parameter  a  is very
             close to a negative integer (but not a negative integer), there is
             a loss of accuracy, which is reported if the result is less than
             half machine precision.
            
             This is a translation from the Fortran version of DGAMIT, SLATEC, FNLIB,
             CATEGORY C7E, REVISION 920528, originally written by Fullerton W.,(LANL)
             to C++.
            
             References:
                (1) W. Gautschi, A computational procedure for incomplete
                    gamma functions, ACM Transactions on Mathematical
                    Software 5, 4 (December 1979), pp. 466-481.
                (2) W. Gautschi, Incomplete gamma functions, Algorithm 542,
                    ACM Transactions on Mathematical Software 5, 4
                    (December 1979), pp. 482-489.
            
             Routines called:
               LnGamma(x)      - logarithm of the Gamma function
               LnGamma(x,sgn)  - logarithm and sign of the Gamma function
               RcpGamma(x)     - reciprocal of the Gamma function
               d9gmit(a,x,algap1,sgngam)
               d9lgit(a,x,algap1)
               d9lgic(a,x,alx)

x : float

The function argument x.

a : float

The function argument a.

Returns: float

Tricomi's incomplete gamma function of x and a.

GammaRelated.GammaIT(x, a, bDebug)

Full Usage: GammaRelated.GammaIT(x, a, bDebug)

Parameters:
    x : float - The function argument x.
    a : float - The function argument a.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float Tricomi's incomplete gamma function of x and a.

GammaIT(x,a) evaluates Tricomi's incomplete gamma function defined by GammaIT = x**(-a)/Gamma(a) * integral from 0 to x of exp(-t) * t**(a-1.0) for a > 0.0 and by analytic continuation for a <= 0.0. Gamma(x) is the complete gamma function of x.

             GammaIT(x,a) is evaluated for arbitrary real values of a and for
             non-negative values of x (even though GammaIT is defined for x < 0.0),
             except that for x = 0 and a <= 0.0, GammaIT is infinite,
             which is a fatal error.
            
             The function and both arguments are double.
             A slight deterioration of 2 or 3 digits accuracy will occur when
             GammaIT is very large or very small in absolute value, because log-
             arithmic variables are used.  Also, if the parameter  a  is very
             close to a negative integer (but not a negative integer), there is
             a loss of accuracy, which is reported if the result is less than
             half machine precision.
            
             This is a translation from the Fortran version of DGAMIT, SLATEC, FNLIB,
             CATEGORY C7E, REVISION 920528, originally written by Fullerton W.,(LANL)
             to C++.
            
             References:
                (1) W. Gautschi, A computational procedure for incomplete
                    gamma functions, ACM Transactions on Mathematical
                    Software 5, 4 (December 1979), pp. 466-481.
                (2) W. Gautschi, Incomplete gamma functions, Algorithm 542,
                    ACM Transactions on Mathematical Software 5, 4
                    (December 1979), pp. 482-489.
            
             Routines called:
               LnGamma(x)      - logarithm of the Gamma function
               LnGamma(x,sgn)  - logarithm and sign of the Gamma function
               RcpGamma(x)     - reciprocal of the Gamma function
               d9gmit(a,x,algap1,sgngam)
               d9lgit(a,x,algap1)
               d9lgic(a,x,alx)

x : float

The function argument x.

a : float

The function argument a.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

Tricomi's incomplete gamma function of x and a.

GammaRelated.GammaRegularized(a, z)

Full Usage: GammaRelated.GammaRegularized(a, z)

Parameters:
    a : float - The function argument.
    z : float - The lower boundary of integration.

Returns: float Incomplete regularized Gamma function of arguments a, z0 and z1.

Evaluate the incomplete regularized Gamma function GammaRegularized(a,z) = { integral from z to infinity of exp(-t) * t**(a-1) } / Gamma(a) The order of parameters is the same as the Mathematica function GammaRegularized[a,z].

a : float

The function argument.

z : float

The lower boundary of integration.

Returns: float

Incomplete regularized Gamma function of arguments a, z0 and z1.

GammaRelated.GammaRegularized(a, z0, z1)

Full Usage: GammaRelated.GammaRegularized(a, z0, z1)

Parameters:
    a : float - The function argument.
    z0 : float - The lower boundary of integration.
    z1 : float - The upper boundary of integration.

Returns: float Incomplete regularized Gamma function of arguments a, z0 and z1.

Evaluate the incomplete regularized Gamma function Gamma(a,z0,z1) = { integral from z0 to z1 of exp(-t) * t**(a-1) }/Gamma(a) The order of parameters is the same as the Mathematica function GammaRegularized[a,z0,z1].

a : float

The function argument.

z0 : float

The lower boundary of integration.

z1 : float

The upper boundary of integration.

Returns: float

Incomplete regularized Gamma function of arguments a, z0 and z1.

GammaRelated.InverseBetaRegularized(alpha, p, q)

Full Usage: GammaRelated.InverseBetaRegularized(alpha, p, q)

Parameters:
    alpha : float - Probability (0..1)
    p : float - Parameter p.
    q : float - Parameter q.

Returns: float

InverseBetaRegularized gives the inverse of the incomplete beta function ratio (GammaRelated.BetaIR or GammaRelated.BetaRegularized).

alpha : float

Probability (0..1)

p : float

Parameter p.

q : float

Parameter q.

Returns: float

GammaRelated.InverseGammaRegularized(a, z)

Full Usage: GammaRelated.InverseGammaRegularized(a, z)

Parameters:
    a : float
    z : float

Returns: float

a : float
z : float
Returns: float

GammaRelated.LnBeta(a, b)

Full Usage: GammaRelated.LnBeta(a, b)

Parameters:
    a : float -
    b : float -

Returns: float The logarithm of the complete beta function.

LnBeta(a,b) calculates the double precision natural logarithm of the complete beta function for double precision arguments a and b.

             This is a translation from the Fortran version of DLBETA(A,B), SLATEC, FNLIB,
             CATEGORY C7B, REVISION 900727, originally written by Fullerton W.,(LANL)
             to C++.
            
             Calls d9lgmc(x), LogRel(x), LnGamma(x), Gamma(x)

a : float

b : float

Returns: float

The logarithm of the complete beta function.

GammaRelated.LnBeta(a, b, bDebug)

Full Usage: GammaRelated.LnBeta(a, b, bDebug)

Parameters:
    a : float -
    b : float -
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float The logarithm of the complete beta function.

LnBeta(a,b) calculates the double precision natural logarithm of the complete beta function for double precision arguments a and b.

             This is a translation from the Fortran version of DLBETA(A,B), SLATEC, FNLIB,
             CATEGORY C7B, REVISION 900727, originally written by Fullerton W.,(LANL)
             to C++.
            
             Calls d9lgmc(x), LogRel(x), LnGamma(x), Gamma(x)

a : float

b : float

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

The logarithm of the complete beta function.

GammaRelated.LnGamma(x, sgn)

Full Usage: GammaRelated.LnGamma(x, sgn)

Parameters:
    x : float - The function argument x.
    sgn : byref<float> - The sign of the gamma function.

Returns: float The logarithm of the absolute value of the gamma function.

LnGamma(x,sgn) returns the double precision natural logarithm of the absolute value of the Gamma function for double precision argument x. The sign of the gamma function is returned in sgn.

             This is a translation from the Fortran version of DLGAMS, SLATEC, FNLIB,
             CATEGORY C7A, REVISION 891214, originally written by Fullerton W.,(LANL)
             to C++.
            
             Routines called:
              LnGamma(x)

x : float

The function argument x.

sgn : byref<float>

The sign of the gamma function.

Returns: float

The logarithm of the absolute value of the gamma function.

GammaRelated.LnGamma(x, sgn, bDebug)

Full Usage: GammaRelated.LnGamma(x, sgn, bDebug)

Parameters:
    x : float - The function argument x.
    sgn : byref<float> - The sign of the gamma function.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float The logarithm of the absolute value of the gamma function.

LnGamma(x,sgn) returns the double precision natural logarithm of the absolute value of the Gamma function for double precision argument x. The sign of the gamma function is returned in sgn.

             This is a translation from the Fortran version of DLGAMS, SLATEC, FNLIB,
             CATEGORY C7A, REVISION 891214, originally written by Fullerton W.,(LANL)
             to C++.
            
             Routines called:
              LnGamma(x)

x : float

The function argument x.

sgn : byref<float>

The sign of the gamma function.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

The logarithm of the absolute value of the gamma function.

GammaRelated.LnGamma(x)

Full Usage: GammaRelated.LnGamma(x)

Parameters:
    x : float - The function argument x.

Returns: float The logarithm of the absolute value of the Gamma function.

Calculates the double precision logarithm of the absolute value of the Gamma function for double precision argument x.

This is a translation from the Fortran version of DLNGAM, SLATEC, FNLIB, CATEGORY C7A, REVISION 900727, originally written by Fullerton W.,(LANL) to C++. Routines called: Gamma(x) d9lgmc(x)

x : float

The function argument x.

Returns: float

The logarithm of the absolute value of the Gamma function.

GammaRelated.LnGamma(x, bDebug)

Full Usage: GammaRelated.LnGamma(x, bDebug)

Parameters:
    x : float - The function argument x.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float The logarithm of the absolute value of the Gamma function.

Calculates the double precision logarithm of the absolute value of the Gamma function for double precision argument x.

This is a translation from the Fortran version of DLNGAM, SLATEC, FNLIB, CATEGORY C7A, REVISION 900727, originally written by Fullerton W.,(LANL) to C++. Routines called: Gamma(x) d9lgmc(x)

x : float

The function argument x.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: float

The logarithm of the absolute value of the Gamma function.

GammaRelated.LnGamma(z)

Full Usage: GammaRelated.LnGamma(z)

Parameters:
    z : Complex - The complex argument.

Returns: Complex The complex logarithm of the gamma function of the complex argument z.

Complex logarithm of the gamma function.

August 1980 edition. W. Fullerton c3, Los Alamos Scientific Lab. Eventually clngam should make use of c8lgmc for all z except for z in the vicinity of 1 and 2.

z : Complex

The complex argument.

Returns: Complex

The complex logarithm of the gamma function of the complex argument z.

GammaRelated.LnGamma(z, bDebug)

Full Usage: GammaRelated.LnGamma(z, bDebug)

Parameters:
    z : Complex - The complex argument.
    bDebug : bool - If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: Complex The complex logarithm of the gamma function of the complex argument z.

Complex logarithm of the gamma function.

August 1980 edition. W. Fullerton c3, Los Alamos Scientific Lab. Eventually clngam should make use of c8lgmc for all z except for z in the vicinity of 1 and 2.

z : Complex

The complex argument.

bDebug : bool

If true, an exception is thrown if serious errors occur. If false, NaN is returned on errors.

Returns: Complex

The complex logarithm of the gamma function of the complex argument z.

GammaRelated.LogBinomial(n, m)

Full Usage: GammaRelated.LogBinomial(n, m)

Parameters:
    n : float - First argument.
    m : float - Second argument.

Returns: float The natural logarithm of the binomial coefficient ( n over m).

Gives the natural logarithm of the binomial coefficient ( n over m).

n : float

First argument.

m : float

Second argument.

Returns: float

The natural logarithm of the binomial coefficient ( n over m).