PCRRegression Type

PCRRegression contains static methods for doing principal component regression analysis and prediction of the data.

Constructors

Constructor Description

PCRRegression()

Full Usage: PCRRegression()

Instance members

Instance member Description

this.GetPRESSFromPreprocessed

Full Usage: this.GetPRESSFromPreprocessed

Parameters:
Returns: IROVector<float>
Modifiers: abstract

matrixX : IROMatrix<float>
Returns: IROVector<float>

this.InternalCalibrationModel

Full Usage: this.InternalCalibrationModel

Returns: MultivariateCalibrationModel
Modifiers: abstract

Returns: MultivariateCalibrationModel

this.PredictedYAndSpectralResidualsFromPreprocessed

Full Usage: this.PredictedYAndSpectralResidualsFromPreprocessed

Parameters:
    XU : IROMatrix<float> - Matrix of unknown spectra (preprocessed the same way as the calibration spectra).
    numFactors : int - Number of factors used for prediction.
    predictedY : IMatrix<float> - On return, holds the predicted y values. (They are centered).
    spectralResiduals : IMatrix<float> - On return, holds the spectral residual values.

Modifiers: abstract

This predicts concentrations of unknown spectra.

XU : IROMatrix<float>

Matrix of unknown spectra (preprocessed the same way as the calibration spectra).

numFactors : int

Number of factors used for prediction.

predictedY : IMatrix<float>

On return, holds the predicted y values. (They are centered).

spectralResiduals : IMatrix<float>

On return, holds the spectral residual values.

this.Reset

Full Usage: this.Reset

Modifiers: abstract

this.SetCalibrationModel

Full Usage: this.SetCalibrationModel

Parameters:
Modifiers: abstract

calib : IMultivariateCalibrationModel

Static members

Static member Description

PCRRegression.CalculatePRESS(yLoads, xScores, numberOfFactors, press)

Full Usage: PCRRegression.CalculatePRESS(yLoads, xScores, numberOfFactors, press)

Parameters:

yLoads : IROMatrix<float>
xScores : IROMatrix<float>
numberOfFactors : int
press : byref<IROVector<float>>

PCRRegression.CalculatePRESS(matrixX, xLoads, yLoads, xScores, crossProduct, numberOfFactors, PRESS)

Full Usage: PCRRegression.CalculatePRESS(matrixX, xLoads, yLoads, xScores, crossProduct, numberOfFactors, PRESS)

Parameters:

matrixX : IROMatrix<float>
xLoads : IROMatrix<float>
yLoads : IROMatrix<float>
xScores : IROMatrix<float>
crossProduct : IReadOnlyList<float>
numberOfFactors : int
PRESS : byref<IROVector<float>>

PCRRegression.CalculateXLeverageFromPreprocessed(xScores, numberOfFactors, leverage)

Full Usage: PCRRegression.CalculateXLeverageFromPreprocessed(xScores, numberOfFactors, leverage)

Parameters:

xScores : IROMatrix<float>
numberOfFactors : int
leverage : IMatrix<float>

PCRRegression.CreateFromPreprocessed(matrixX, matrixY, maxFactors)

Full Usage: PCRRegression.CreateFromPreprocessed(matrixX, matrixY, maxFactors)

Parameters:
    matrixX : IROMatrix<float> - The spectral matrix (each spectrum is a row in the matrix). They must at least be centered.
    matrixY : IROMatrix<float> - The matrix of concentrations (each experiment is a row in the matrix). They must at least be centered.
    maxFactors : int - Maximum number of factors for analysis.

Returns: PCRRegression A regression object, which holds all the loads and weights neccessary for further calculations.

Creates an analyis from preprocessed spectra and preprocessed concentrations.

matrixX : IROMatrix<float>

The spectral matrix (each spectrum is a row in the matrix). They must at least be centered.

matrixY : IROMatrix<float>

The matrix of concentrations (each experiment is a row in the matrix). They must at least be centered.

maxFactors : int

Maximum number of factors for analysis.

Returns: PCRRegression

A regression object, which holds all the loads and weights neccessary for further calculations.

PCRRegression.ExecuteAnalysis(X, Y, numFactors, xLoads, xScores, V)

Full Usage: PCRRegression.ExecuteAnalysis(X, Y, numFactors, xLoads, xScores, V)

Parameters:

X : IROMatrix<float>
Y : IROMatrix<float>
numFactors : byref<int>
xLoads : byref<IROMatrix<float>>
xScores : byref<IROMatrix<float>>
V : byref<IROVector<float>>

PCRRegression.GetPredictionScoreMatrix(xLoads, yLoads, xScores, crossProduct, numberOfFactors, predictionScores)

Full Usage: PCRRegression.GetPredictionScoreMatrix(xLoads, yLoads, xScores, crossProduct, numberOfFactors, predictionScores)

Parameters:

xLoads : IROMatrix<float>
yLoads : IROMatrix<float>
xScores : IROMatrix<float>
crossProduct : IReadOnlyList<float>
numberOfFactors : int
predictionScores : IMatrix<float>

PCRRegression.GetSpectralResiduals(matrixX, xLoads, yLoads, xScores, crossProduct, numberOfFactors, spectralResiduals)

Full Usage: PCRRegression.GetSpectralResiduals(matrixX, xLoads, yLoads, xScores, crossProduct, numberOfFactors, spectralResiduals)

Parameters:

matrixX : IROMatrix<float>
xLoads : IROMatrix<float>
yLoads : IROMatrix<float>
xScores : IROMatrix<float>
crossProduct : IReadOnlyList<float>
numberOfFactors : int
spectralResiduals : IMatrix<float>

PCRRegression.Predict(matrixX, xLoads, yLoads, xScores, crossProduct, numberOfFactors, predictedY, spectralResiduals)

Full Usage: PCRRegression.Predict(matrixX, xLoads, yLoads, xScores, crossProduct, numberOfFactors, predictedY, spectralResiduals)

Parameters:

matrixX : IROMatrix<float>
xLoads : IROMatrix<float>
yLoads : IROMatrix<float>
xScores : IROMatrix<float>
crossProduct : IReadOnlyList<float>
numberOfFactors : int
predictedY : IMatrix<float>
spectralResiduals : IMatrix<float>