Header menu logo BioFSharp

Prediction Module

Contains functions to execute peptide observability prediction using the deep neural network dppop.

Types

Type Description

Model

Options concerning the model used for prediction.

Functions and values

Function or value Description

scoreBy model distinctPeptideSet data

Full Usage: scoreBy model distinctPeptideSet data

Parameters:
Returns: PredictionOutput[]

For expert use. Returns the observability prediction for the input peptides. Loads a trained CNTK model (either dppops plant/nonPlant models or a custom model) and evaluates the scores for the given collection of features (PredictionInput) No feature normalization is done.

model : Model
distinctPeptideSet : Set<string>
data : PredictionInput[]
Returns: PredictionOutput[]

scoreDppopNonPlant proteome proteinsOfInterest

Full Usage: scoreDppopNonPlant proteome proteinsOfInterest

Parameters:
Returns: PredictionOutput[] seq

Returns relative observability scores for uniquely mapping peptides of proteins of interest using dppops non-plant model and feature normalization procedure, given the proteome of the organism.

proteome : FastaItem<BioArray<AminoAcid>> seq
proteinsOfInterest : FastaItem<BioArray<AminoAcid>> seq
Returns: PredictionOutput[] seq

scoreDppopPlant proteome proteinsOfInterest

Full Usage: scoreDppopPlant proteome proteinsOfInterest

Parameters:
Returns: PredictionOutput[] seq

Returns relative observability scores for uniquely mapping peptides of proteins of interest using dppops plant model and feature normalization procedure, given the proteome of the organism.

proteome : FastaItem<BioArray<AminoAcid>> seq
proteinsOfInterest : FastaItem<BioArray<AminoAcid>> seq
Returns: PredictionOutput[] seq

scoreProteinsAgainstProteome model featureNormalization proteome proteinsOfInterest

Full Usage: scoreProteinsAgainstProteome model featureNormalization proteome proteinsOfInterest

Parameters:
Returns: PredictionOutput[] seq

Returns relative observability scores for uniquely mapping peptides of proteins of interest given a model, normalization procedure for features, and the proteome of the organism.

model : Model
featureNormalization : PredictionInput -> PredictionInput
proteome : FastaItem<BioArray<AminoAcid>> seq
proteinsOfInterest : FastaItem<BioArray<AminoAcid>> seq
Returns: PredictionOutput[] seq

Type something to start searching.